Engineered Split-TET2 Enzyme for Inducible Epigenetic Remodeling
نویسندگان
چکیده
The Ten-eleven translocation (TET) family of 5-methylcytosine (5mC) dioxygenases catalyze the conversion of 5mC into 5-hydroxymethylcytosine (5hmC) and further oxidized species to promote active DNA demethylation. Here we engineered a split-TET2 enzyme to enable temporal control of 5mC oxidation and subsequent remodeling of epigenetic states in mammalian cells. We further demonstrate the use of this chemically inducible system to dissect the correlation between DNA hydroxymethylation and chromatin accessibility in the mammalian genome. This chemical-inducible epigenome remodeling tool will find broad use in interrogating cellular systems without altering the genetic code, as well as in probing the epigenotype-phenotype relations in various biological systems.
منابع مشابه
Consecutive epigenetically-active agent combinations act in ID1-RUNX3-TET2 and HOXA pathways for Flt3ITD+ve AML
Co-occurrence of Flt3ITD and TET2 mutations provoke an animal model of AML by epigenetic repression of Wnt pathway antagonists, including RUNX3, and by hyperexpression of ID1, encoding Wnt agonist. These affect HOXA over-expression and treatment resistance. A comparable epigenetic phenotype was identified among adult AML patients needing novel intervention. We chose combinations of targeted age...
متن کاملTen-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity.
BACKGROUND Smooth muscle cells (SMCs) are remarkably plastic. Their reversible differentiation is required for growth and wound healing but also contributes to pathologies such as atherosclerosis and restenosis. Although key regulators of the SMC phenotype, including myocardin (MYOCD) and KLF4, have been identified, a unifying epigenetic mechanism that confers reversible SMC differentiation has...
متن کاملProlonged re-expression of the hypermethylated gene EPB41L3 using artificial transcription factors and epigenetic drugs.
Epigenetic silencing of tumor suppressor genes (TSGs) is considered a significant event in the progression of cancer. For example, EPB41L3, a potential biomarker in cervical cancer, is often silenced by cancer-specific promoter methylation. Artificial transcription factors (ATFs) are unique tools to re-express such silenced TSGs to functional levels; however, the induced effects are considered ...
متن کاملThe evolving epigenome.
Epigenetic studies include the investigation of DNA methylation, histone modifications, chromatin remodeling and gene regulation by noncoding RNAs (ncRNAs). Epigenetic alterations are critical for early developmental processes, the silencing of the inactive X-chromosome and tissue-specific gene regulation. A comprehensive picture of epigenetic patterns in normal cells is now emerging; these pat...
متن کاملTET2 as an epigenetic master regulator for normal and malignant hematopoiesis
DNA methylation is one of the critical epigenetic modifications regulating various cellular processes such as differentiation or proliferation, and its dysregulation leads to disordered stem cell function or cellular transformation. The ten-eleven translocation (TET) gene family, initially found as a chromosomal translocation partner in leukemia, turned out to be a key enzyme for DNA demethylat...
متن کامل